Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.707
Filtrar
1.
Pediatr Transplant ; 28(3): e14751, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38659194

RESUMEN

BACKGROUND: The published experience concerning autologous peripheral blood stem cell collection in children is very limited. METHODS: The data of pediatric patients who underwent autologous stem cell mobilization and apheresis between January 2011 and April 2020 were analyzed retrospectively. RESULTS: We studied retrospectively 64 mobilization and apheresis procedures in 48 pediatric patients (34 males, 14 females), mean age of 7.31 ± 5.38 (range, 1.5-19.7) years, the underlying disease was mostly neuroblastoma (NBL). The body weight of 21 patients (43.75%) was 15 kg or less. The targeted autologous peripheral stem cell apheresis (APSCA) was successfully achieved in 98% of patients. Neuroblastoma patients were younger than the rest of the patients and underwent apheresis after receiving fewer chemotherapy cycles than others and all of them mobilized within the first session successfully. Plerixafor was added to mobilization in nine heavily pretreated patients (18.7%), median two doses (range, 1-4 doses). 11 patients (22.9%) underwent radiotherapy (RT) before mobilization with doses of median 24 Gy (range, 10.8-54.0 Gy). Patients with RT were older at the time of apheresis and had received more chemotherapy courses than patients without RT. As a result, patients with a history of RT had significantly lower peripheral CD34+ cells and CD34+ yields than those without RT. In 17 patients (35.4%), 22 different complications were noted. The most common complications were catheter-related infections (n:10, 20.8%), followed by catheter-related thrombosis in eight patients (16.7%). CONCLUSIONS: Patients who had far less therapy before apheresis were more likely to mobilize successfully. Our study provides a detailed practice approach including complications during APSCA aiming to increase the success rates of apheresis in transplantation centers.


Asunto(s)
Eliminación de Componentes Sanguíneos , Movilización de Célula Madre Hematopoyética , Neoplasias , Trasplante de Células Madre de Sangre Periférica , Trasplante Autólogo , Humanos , Femenino , Masculino , Movilización de Célula Madre Hematopoyética/métodos , Niño , Estudios Retrospectivos , Preescolar , Adolescente , Lactante , Eliminación de Componentes Sanguíneos/métodos , Trasplante de Células Madre de Sangre Periférica/métodos , Neoplasias/terapia , Adulto Joven , Células Madre de Sangre Periférica
2.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(2): 556-560, 2024 Apr.
Artículo en Chino | MEDLINE | ID: mdl-38660866

RESUMEN

OBJECTIVE: To investigate the efficiency and optimal time of stem cell apheresis mobilized by pegylated recombinant human granulocyte colony stimulating factor (PEG-rhG-CSF) in autologous stem cell transplantation (ASCT) for hematological malignancies without monitoring pre-collection CD34+ cells. METHODS: Forty-six patients underwent stem cell mobilization were retrospectively analyzed between August 2017 and January 2022 at the First Affiliated Hospital of Fujian Medical University. 27 patients using high dose chemotherapy combined with PEG-rhG-CSF mobilization were enrolled in the PEG-rhG-CSF group, and other 19 patients mobilized with recombinant human granulocyte colony stimulating factor (G-CSF) were enrolled in G-CSF group. The mobilization and collection effects of the patients in two groups were compared. RESULTS: A total of 46 patients underwent 86 apheresis procedures, the median amount of mononuclear cell (MNC) in the PEG-rhG-CSF group and G-CSF group was 6.54(3.85-12.61)×108/kg and 6.15(1.13-11.58)×108/kg, respectively (P >0.05), the total CD34+ cells of the grafts were 11.44(1.33-65.02)×106/kg and 4.95(0.30-24.02)×106/kg (P < 0.05), with harvest timing of 14(10-20) days and 14(4-22) days, respectively (P >0.05). In the PEG-rhG-CSF group, there was a significant difference between the number of CD34+ cells collected when white blood cells (WBC) ≥10×109/L and WBC<10×109 /L, 19.04(2.85-65.02)×106/kg and 6.22(0.81-34.86)×106/kg, respectively (P < 0.05). CONCLUSION: Stem cells mobilization with PEG-rhG-CSF was highly efficient with a median mobilization time of 14 days. In the absence of peripheral blood CD34 monitoring, peripheral blood WBC≥10×109/L can be considered as a threshold for a single stem cell apheresis to collect sufficient stem cells.


Asunto(s)
Factor Estimulante de Colonias de Granulocitos , Neoplasias Hematológicas , Movilización de Célula Madre Hematopoyética , Trasplante de Células Madre Hematopoyéticas , Polietilenglicoles , Proteínas Recombinantes , Trasplante Autólogo , Humanos , Factor Estimulante de Colonias de Granulocitos/administración & dosificación , Estudios Retrospectivos , Neoplasias Hematológicas/terapia , Antígenos CD34 , Células Madre Hematopoyéticas/citología , Femenino , Masculino
3.
Cells ; 13(7)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38607025

RESUMEN

Achieving successful hematopoietic stem cell transplantation (HSCT) relies on two fundamental pillars: effective mobilization and efficient collection through apheresis to attain the optimal graft dose. These cornerstones pave the way for enhanced patient outcomes. The primary challenges encountered by the clinical unit and collection facility within a transplant program encompass augmenting mobilization efficiency to optimize the harvest of target cell populations, implementing robust monitoring and predictive strategies for mobilization, streamlining the apheresis procedure to minimize collection duration while ensuring adequate yield, prioritizing patient comfort by reducing the overall collection time, guaranteeing the quality and purity of stem cell products to optimize graft function and transplant success, and facilitating seamless coordination between diverse entities involved in the HSCT process. In this review, we aim to address key questions and provide insights into the critical aspects of mobilizing and collecting hematopoietic stem cells for transplantation purposes.


Asunto(s)
Eliminación de Componentes Sanguíneos , Trasplante de Células Madre Hematopoyéticas , Adulto , Humanos , Movilización de Célula Madre Hematopoyética/métodos , Trasplante Homólogo , Eliminación de Componentes Sanguíneos/métodos , Células Madre Hematopoyéticas
4.
Ann Med ; 56(1): 2329140, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38470973

RESUMEN

AIM: The combination of granulocyte-colony stimulating factor (G-CSF) and plerixafor is one of the approaches for hematopoietic stem cell mobilization in patients with multiple myeloma (MM), non-Hodgkin's lymphoma (NHL), and Hodgkin's lymphoma (HL). This systematic review and meta-analysis aimed to determine the ability of G-CSF + plerixafor to mobilize peripheral blood (PB) CD34+ cells and examine its safety profile. METHODS: We performed a database search using the terms 'granulocyte colony stimulating factor', 'G-CSF', 'AMD3100', and 'plerixafor', published up to May 1, 2023. The methodology is described in further detail in the PROSPERO database (CRD42023425760). RESULTS: Twenty-three studies were included in this systematic review and meta-analysis. G-CSF + plerixafor resulted in more patients achieving the predetermined apheresis yield of CD34+ cells than G-CSF alone (OR, 5.33; 95%, 4.34-6.55). It was further discovered that G-CSF + plerixafor could mobilize more CD34+ cells into PB, which was beneficial for the next transplantation in both randomized controlled (MD, 18.30; 95%, 8.74-27.85) and single-arm (MD, 20.67; 95%, 14.34-27.00) trials. Furthermore, G-CSF + plerixafor did not cause more treatment emergent adverse events than G-CSF alone (OR, 1.25; 95%, 0.87-1.80). CONCLUSIONS: This study suggests that the combination of G-CSF and plerixafor, resulted in more patients with MM, NHL, and HL, achieving the predetermined apheresis yield of CD34+ cells, which is related to the more effective mobilization of CD34+ cells into PB.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Compuestos Heterocíclicos , Linfoma no Hodgkin , Linfoma , Mieloma Múltiple , Humanos , Movilización de Célula Madre Hematopoyética/métodos , Mieloma Múltiple/terapia , Factor Estimulante de Colonias de Granulocitos , Compuestos Heterocíclicos/efectos adversos , Linfoma/inducido químicamente , Linfoma/terapia , Linfoma no Hodgkin/inducido químicamente , Linfoma no Hodgkin/terapia , Células Madre Hematopoyéticas , Trasplante Autólogo , Bencilaminas , Trasplante de Células Madre Hematopoyéticas/métodos
5.
Cell Commun Signal ; 22(1): 177, 2024 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-38475811

RESUMEN

BACKGROUND: The incidence of multiple myeloma (MM), a type of blood cancer affecting monoclonal plasma cells, is rising. Although new drugs and therapies have improved patient outcomes, MM remains incurable. Recent studies have highlighted the crucial role of the chemokine network in MM's pathological mechanism. Gaining a better understanding of this network and creating an overview of chemokines in MM could aid in identifying potential biomarkers and developing new therapeutic strategies and targets. PURPOSE: To summarize the complicated role of chemokines in MM, discuss their potential as biomarkers, and introduce several treatments based on chemokines. METHODS: Pubmed, Web of Science, ICTRP, and Clinical Trials were searched for articles and research related to chemokines. Publications published within the last 5 years are selected. RESULTS: Malignant cells can utilize chemokines, including CCL2, CCL3, CCL5, CXCL7, CXCL8, CXCL12, and CXCL13 to evade apoptosis triggered by immune cells or medication, escape from bone marrow and escalate bone lesions. Other chemokines, including CXCL4, CCL19, and CXCL10, may aid in recruiting immune cells, increasing their cytotoxicity against cancer cells, and inducing apoptosis of malignant cells. CONCLUSION: Utilizing anti-tumor chemokines or blocking pro-tumor chemokines may provide new therapeutic strategies for managing MM. Inspired by developed CXCR4 antagonists, including plerixafor, ulocuplumab, and motixafortide, more small molecular antagonists or antibodies for pro-tumor chemokine ligands and their receptors can be developed and used in clinical practice. Along with inhibiting pro-tumor chemokines, studies suggest combining chemokines with chimeric antigen receptor (CAR)-T therapy is promising and efficient.


Asunto(s)
Compuestos Heterocíclicos , Mieloma Múltiple , Humanos , Movilización de Célula Madre Hematopoyética , Quimiocinas , Transducción de Señal , Biomarcadores
6.
Transfusion ; 64(4): 742-750, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38407504

RESUMEN

Plerixafor (PLER), a reversible antagonist of the CXC chemokine receptor type 4, has been in clinical use for mobilization of blood grafts for autologous hematopoietic cell transplantation (AHCT) for about 15 years. Initially PLER was investigated in placebo-controlled trials with the granulocyte colony-stimulating factor (G-CSF) filgrastim. It has also been used in combination with chemotherapy plus G-CSF in patients who had failed a previous mobilization attempt or appeared to mobilize poorly with current mobilization (preemptive use). This review summarizes what is known regarding addition of PLER to standard mobilization regimens. PLER increases mobilization of CD34+ cells, decreases the number of apheresis sessions needed to achieve collection targets and increases the proportion of patients who can proceed to AHCT. It appears also to increase the amount of various lymphocyte subsets in the grafts collected. In general, hematologic recovery after AHCT has been comparable to patients mobilized without PLER, although slower platelet recovery has been observed in some studies of patients who mobilize poorly. In phase III studies, long-term outcome has been comparable to patients mobilized without PLER. This also appears to be the case in patients receiving plerixafor for poor or suboptimal mobilization of CD34+ cells. In practice, PLER is safe and has not been shown to increase tumor cell mobilization.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Compuestos Heterocíclicos , Mieloma Múltiple , Humanos , Movilización de Célula Madre Hematopoyética , Compuestos Heterocíclicos/farmacología , Compuestos Heterocíclicos/uso terapéutico , Factor Estimulante de Colonias de Granulocitos/farmacología , Factor Estimulante de Colonias de Granulocitos/uso terapéutico , Trasplante Autólogo , Mieloma Múltiple/terapia , Antígenos CD34/metabolismo
7.
Curr Opin Hematol ; 31(3): 104-114, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38359264

RESUMEN

PURPOSE OF REVIEW: Gene therapy for sickle cell disease (SCD) is advancing rapidly, with two transformative products recently approved by the US Food and Drug Administration and numerous others under study. All current gene therapy protocols require ex vivo modification of autologous hematopoietic stem cells (HSCs). However, several SCD-related problems impair HSC collection, including a stressed and damaged bone marrow, potential cytotoxicity by the major therapeutic drug hydroxyurea, and inability to use granulocyte colony stimulating factor, which can precipitate severe vaso-occlusive events. RECENT FINDINGS: Peripheral blood mobilization of HSCs using the CXCR4 antagonist plerixafor followed by apheresis collection was recently shown to be safe and effective for most SCD patients and is the current strategy for mobilizing HSCs. However, exceptionally large numbers of HSCs are required to manufacture an adequate cellular product, responses to plerixafor are variable, and most patients require multiple mobilization cycles, increasing the risk for adverse events. For some, gene therapy is prohibited by the failure to obtain adequate numbers of HSCs. SUMMARY: Here we review the current knowledge on HSC collection from individuals with SCD and potential improvements that may enhance the safety, efficacy, and availability of gene therapy for this disorder.


Asunto(s)
Anemia de Células Falciformes , Trasplante de Células Madre Hematopoyéticas , Compuestos Heterocíclicos , Humanos , Movilización de Célula Madre Hematopoyética/métodos , Compuestos Heterocíclicos/uso terapéutico , Compuestos Heterocíclicos/efectos adversos , Células Madre Hematopoyéticas/metabolismo , Anemia de Células Falciformes/genética , Anemia de Células Falciformes/terapia , Factor Estimulante de Colonias de Granulocitos , Terapia Genética/efectos adversos
8.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(1): 322-326, 2024 Feb.
Artículo en Chino | MEDLINE | ID: mdl-38387943

RESUMEN

Plerixafor, an analog of C-X-C motif chemokine receptor 4 (CXCR4), which allows the release of stem cells from the bone marrow into peripheral blood (PB) by disrupting the interaction of CXCR4 with stromal cell-derived factor-1 (SDF-1), is effective in mobilization for peripheral blood stem cells (PBSC). Due to its market approval has not been long and its high price in China, the clinical application of plerixafor is still very limited. The clinicians are actively seeking the optimal use of plerixafor to improve the success rate of PBSC collection and reduce the cost. This article reviews the latest research progress related to plerixafor application, in order to summarize the optimal use of plerixafor in autologous hematopoietic stem cell transplantation (auto-HSCT).


Asunto(s)
Ciclamas , Compuestos Heterocíclicos , Células Madre de Sangre Periférica , Humanos , Movilización de Célula Madre Hematopoyética , Trasplante Autólogo , Bencilaminas
9.
Bone Marrow Transplant ; 59(3): 403-408, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38212669

RESUMEN

Granulocyte colony-stimulating factor (G-CSF) is used in a majority of healthy donors to obtain peripheral blood stem cells for allogeneic stem cell transplantation. Since high levels of G-CSF activates endothelial cells and can induce a pro-coagulatory state, and fuelled by case reports of cardiovascular events in donors, some concerns have been raised about a potential for an increased risk of cardiovascular events for the donors after donation. We studied the incidence of cardiovascular disease following stem cell donation in a Swedish national register based cohort of 1098 peripheral blood stem cell donors between 1998 and 2016. The primary objective was to evaluate if the incidence of cardiovascular disease was increased for donors treated with G-CSF. The incidence of any new cardiovascular disease was 6.0 cases per 1000 person years, with a median follow up of 9.8 years. The incidence did not exceed that of age- sex- and residency-matched population controls (hazard ratio 0.90, 95% confidence interval (CI) 0.76-1.07, p-value 0.23), bone marrow donors, or non-donating siblings. Long-term cardiovascular disease incidence was not increased in this national register based study of peripheral blood stem cell donors treated with G-CSF.


Asunto(s)
Enfermedades Cardiovasculares , Trasplante de Células Madre Hematopoyéticas , Células Madre de Sangre Periférica , Humanos , Incidencia , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/etiología , Células Endoteliales , Suecia/epidemiología , Movilización de Célula Madre Hematopoyética/efectos adversos , Factor Estimulante de Colonias de Granulocitos/farmacología , Donantes de Sangre
10.
Blood Cells Mol Dis ; 105: 102824, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38262104

RESUMEN

In preparation for hematopoietic stem cell mobilization and collection, current ex vivo gene therapy protocols for sickle cell disease require patients to undergo several months of chronic red cell transfusion. For health care equity, alternatives to red cell transfusion should be available. We examined whether treatment with GBT1118, the murine analog of voxelotor, could be a safe and feasible alternative to red cell transfusion. We found that 3 weeks of treatment with GBT1118 increased the percentage of bone marrow hematopoietic stem cells and upon plerixafor mobilization, the percentage of peripheral blood hematopoietic stem cells. Our data suggest that voxelotor should be further explored for its potential safety and utility as preparation for hematopoietic stem cell mobilization and collection.


Asunto(s)
Anemia de Células Falciformes , Benzaldehídos , Trasplante de Células Madre Hematopoyéticas , Compuestos Heterocíclicos , Niacinamida/análogos & derivados , Pirazinas , Humanos , Ratones , Animales , Movilización de Célula Madre Hematopoyética/métodos , Médula Ósea/metabolismo , Células Madre Hematopoyéticas/metabolismo , Compuestos Heterocíclicos/uso terapéutico , Compuestos Heterocíclicos/farmacología , Pirazoles , Anemia de Células Falciformes/genética , Anemia de Células Falciformes/terapia , Anemia de Células Falciformes/metabolismo , Terapia Genética/efectos adversos , Factor Estimulante de Colonias de Granulocitos/farmacología
11.
Ann Hematol ; 103(5): 1601-1611, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38267561

RESUMEN

High-dose cyclophosphamide (HD-Cy) (3 g/m2) plus granulocyte colony-stimulating factor (G-CSF) is a very effective regimen for peripheral blood stem cell (PBSC) mobilization. Unfortunately, it is associated with an increased risk of neutropenic fever (NF). We analyzed the effect of NF on PBSC apheresis results and the efficacy of prophylactic antibiotics for the prevention of NF associated with HD-Cy plus G-CSF for PBSC mobilization in patients with newly diagnosed multiple myeloma (MM). First, patients were divided into NF ( +) and NF ( -) groups according to whether they suffered from NF during mobilization. Second, we divided patients into an antibiotic prophylaxis group and a nonantibiotic prophylaxis group according to whether antibiotic prophylaxis was used during the mobilization period. Our study showed that NF( +) patients (n = 44) had lower CD34 + cell dose collection (median 2.60 versus 5.34 × 106/kg, P < 0.001) and slower neutrophil engraftment and platelet engraftment (median 11 versus 10 days, P = 0.002, and median 13 versus 11 days, P = 0.043, respectively) than NF( -) patients (n = 234). Of note, the nonantibiotic prophylaxis group patients (n = 30) had a 26.7% incidence of NF. In the patients receiving antibiotic prophylaxis (n = 227), the incidence was reduced to 9.3% (P = 0.01). The antibiotic prophylaxis patients had higher CD34 + cell collection (median 5.41 versus 2.27 × 106/kg, P < 0.001) and lower hospitalization cost of mobilization ($ median 3108.02 versus 3702.39, p = 0.012). Thus, our results demonstrate that NF is associated with lower CD34 + cell collection and that antibiotic prophylaxis can reduce the incidence of NF and improve stem cell mobilization and collection outcomes, which reduces the hospitalization cost of mobilization.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Mieloma Múltiple , Humanos , Mieloma Múltiple/complicaciones , Mieloma Múltiple/tratamiento farmacológico , Movilización de Célula Madre Hematopoyética/métodos , Trasplante de Células Madre Hematopoyéticas/métodos , Ciclofosfamida/efectos adversos , Factor Estimulante de Colonias de Granulocitos/uso terapéutico , Antibacterianos/uso terapéutico , Antígenos CD34/metabolismo
12.
Blood ; 143(16): 1656-1669, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38295333

RESUMEN

ABSTRACT: Autologous stem cell transplantation (ASCT) is the standard of care consolidation therapy for eligible patients with myeloma but most patients eventually progress, an event associated with features of immune escape. Novel approaches to enhance antimyeloma immunity after ASCT represent a major unmet need. Here, we demonstrate that patient-mobilized stem cell grafts contain high numbers of effector CD8 T cells and immunosuppressive regulatory T cells (Tregs). We showed that bone marrow (BM)-residing T cells are efficiently mobilized during stem cell mobilization (SCM) and hypothesized that mobilized and highly suppressive BM-derived Tregs might limit antimyeloma immunity during SCM. Thus, we performed ASCT in a preclinical myeloma model with or without stringent Treg depletion during SCM. Treg depletion generated SCM grafts containing polyfunctional CD8 T effector memory cells, which dramatically enhanced myeloma control after ASCT. Thus, we explored clinically tractable translational approaches to mimic this scenario. Antibody-based approaches resulted in only partial Treg depletion and were inadequate to recapitulate this effect. In contrast, a synthetic interleukin-2 (IL-2)/IL-15 mimetic that stimulates the IL-2 receptor on CD8 T cells without binding to the high-affinity IL-2Ra used by Tregs efficiently expanded polyfunctional CD8 T cells in mobilized grafts and protected recipients from myeloma progression after ASCT. We confirmed that Treg depletion during stem cell mobilization can mitigate constraints on tumor immunity and result in profound myeloma control after ASCT. Direct and selective cytokine signaling of CD8 T cells can recapitulate this effect and represent a clinically testable strategy to improve responses after ASCT.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Mieloma Múltiple , Humanos , Mieloma Múltiple/patología , Linfocitos T Reguladores , Trasplante de Células Madre Hematopoyéticas/métodos , Movilización de Célula Madre Hematopoyética/métodos , Trasplante Autólogo , Trasplante de Células Madre
13.
Ann Hematol ; 103(3): 947-956, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38189833

RESUMEN

Data about biosimilar Peg-filgrastim (bioPEG) in autologous stem cell transplant (ASCT) are still scarce. The aim of this study has been to assess efficacy and safety of bioPEG among lymphoma and myeloma patients undergoing ASCT, comparing these data with historical controls receiving other G-CSFs. Furthermore, an economic evaluation has been included to estimate the savings by using bioPEG. This is a prospective cohort study comparing lymphoma and myeloma patients undergoing ASCT and receiving bioPEG (n = 73) with three historical consecutive cohorts collected retrospectively who received other G-CSFs (Lenograstim - Leno - n = 101, biosimilar Filgrastim - bioFIL n = 392, and originator Peg-filgrastim - oriPEG n = 60). We observed a significantly shorter time to neutrophils and platelet engraftment (p < 0.001) in patients treated with bioPEG and oriPEG. Moreover, patients who received bioPEG showed a shorter hospitalization time (p < 0.001) and a lower transfusion need (p < 0.001). We did not observe any significant difference in terms of transplant-related mortality, mucositis, and diarrhea among the four groups. No serious adverse events were associated with bioPEG. Similar data were obtained after running a stratified analysis for lymphomas and myeloma separately conducted by using a propensity score matching. The average total cost per patient of bioPEG was € 18218.9 compared to € 23707.8, € 20677.3 and € 19754.9 of Leno, oriPEG, and bioFIL, respectively. In conclusion, bioPEG seems to be as effective as the originator and more effective than short-acting G-CSFs in terms of post-transplant engraftment in myeloma and lymphoma patients undergoing ASCT. Moreover, bioPEG was cost-effective when compared with the other G-CSFs.


Asunto(s)
Biosimilares Farmacéuticos , Linfoma , Mieloma Múltiple , Humanos , Filgrastim/efectos adversos , Lenograstim , Mieloma Múltiple/tratamiento farmacológico , Biosimilares Farmacéuticos/efectos adversos , Estudios Retrospectivos , Estudios Prospectivos , Linfoma/tratamiento farmacológico , Factor Estimulante de Colonias de Granulocitos , Trasplante de Células Madre , Proteínas Recombinantes , Movilización de Célula Madre Hematopoyética
14.
J Clin Apher ; 39(1): e22102, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38186371

RESUMEN

BACKGROUND: Peripheral blood stem cell (PBSC) collection in children poses challenges due to their small size, low body weight (BW), and unique pediatric physiology, especially among children weighing 20 kg (kg) or less. METHODS: PBSC collection data of both healthy children and patients with thalassemia major (TM) weighing 20 kg or less between January 2013 and December 2020 were reviewed. Moreover, PBSCs characteristics along with various aspects of efficiency and safety between healthy donors and patients with TM were compared. RESULTS: A total of 262 PBSC procedures were performed on 255 children. Of these, 91 procedures were carried out on 85 allogeneic healthy donors, and 171 auto-backup collections were performed on 170 patients with TM to ensure PBSC availability and prevent transplantation failure. A minimum pre-apheresis hemoglobin (HGB) level of 60 g/L was discovered to be safe and feasible in patients with TM. The median CD34+ cell dose in the PBSC product during the initial apheresis procedure was higher in healthy donors compared to patients with TM (7.29 ± 5.28 × 106 cells/kg vs5.88 ± 4.23 × 106 cells/kg, P = .043). The total CD34+ cells/kg recipient weight exhibited a positive correlation with pre-apheresis monocyte counts, but a negative correlation with donor weight. Apheresis significantly reduced hematocrit and platelet counts in the allogeneic group compared to the autologous group. Patients with TM experienced a higher occurrence of bone pain related to granulocyte colony-stimulating factor treatment. Notably, no serious complications related to PBSCs mobilization, central venous catheter placement, or the apheresis procedure were observed in either group. CONCLUSIONS: PBSCs collection was both safe and effective in healthy children and pediatric patients with TM weighing 20 kg or less.


Asunto(s)
Eliminación de Componentes Sanguíneos , Células Madre de Sangre Periférica , Talasemia beta , Humanos , Niño , Talasemia beta/complicaciones , Talasemia beta/terapia , Movilización de Célula Madre Hematopoyética/métodos , Factor Estimulante de Colonias de Granulocitos
16.
Curr Osteoporos Rep ; 22(1): 80-95, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38198032

RESUMEN

PURPOSE OF THE REVIEW: The bone and hematopoietic tissues coemerge during development and are functionally intertwined throughout mammalian life. Oncostatin M (OSM) is an inflammatory cytokine of the interleukin-6 family produced by osteoblasts, bone marrow macrophages, and neutrophils. OSM acts via two heterodimeric receptors comprising GP130 with either an OSM receptor (OSMR) or a leukemia inhibitory factor receptor (LIFR). OSMR is expressed on osteoblasts, mesenchymal, and endothelial cells and mice deficient for the Osm or Osmr genes have both bone and blood phenotypes illustrating the importance of OSM and OSMR in regulating these two intertwined tissues. RECENT FINDINGS: OSM regulates bone mass through signaling via OSMR, adaptor protein SHC1, and transducer STAT3 to both stimulate osteoclast formation and promote osteoblast commitment; the effect on bone formation is also supported by action through LIFR. OSM produced by macrophages is an important inducer of neurogenic heterotopic ossifications in peri-articular muscles following spinal cord injury. OSM produced by neutrophils in the bone marrow induces hematopoietic stem and progenitor cell proliferation in an indirect manner via OSMR expressed by bone marrow stromal and endothelial cells that form hematopoietic stem cell niches. OSM acts as a brake to therapeutic hematopoietic stem cell mobilization in response to G-CSF and CXCR4 antagonist plerixafor. Excessive OSM production by macrophages in the bone marrow is a key contributor to poor hematopoietic stem cell mobilization (mobilopathy) in people with diabetes. OSM and OSMR may also play important roles in the progression of several cancers. It is increasingly clear that OSM plays unique roles in regulating the maintenance and regeneration of bone, hematopoietic stem and progenitor cells, inflammation, and skeletal muscles. Dysregulated OSM production can lead to bone pathologies, defective muscle repair and formation of heterotopic ossifications in injured muscles, suboptimal mobilization of hematopoietic stem cells, exacerbated inflammatory responses, and anti-tumoral immunity. Ongoing research will establish whether neutralizing antibodies or cytokine traps may be useful to correct pathologies associated with excessive OSM production.


Asunto(s)
Compuestos Heterocíclicos , Osificación Heterotópica , Animales , Humanos , Ratones , Células Endoteliales/metabolismo , Movilización de Célula Madre Hematopoyética , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/patología , Mamíferos/metabolismo , Oncostatina M/genética , Oncostatina M/metabolismo , Oncostatina M/farmacología
17.
Acta Biomater ; 173: 365-377, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37890815

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is a fatal disease that responds poorly to single-drug immunotherapy with PD-L1 (CD274) inhibitors. Here, we prepared mesoporous nanomaterials Cu2MoS4 (CMS)/PEG loaded with PD-L1 inhibitor BMS-1 and CXCR4 inhibitor Plerixafor to form the nanodrug CMS/PEG-B-P. In vitro experiments, CMS/PEG-B-P have a more substantial inhibitory effect on the expression of PD-L1 and CXCR4 as well as to promote the apoptosis of pancreatic cancer cells KPC and suppressed KPC cell proliferation were detected by flow cytometry, qPCR and Western blotting (WB). Promotes the release of the cytotoxic substance reactive oxygen species (ROS) and the production of the immunogenic cell death (ICD) marker calreticulin (CRT) in KPC cells. CMS/PEG-B-P was also detected to have a certain activating effect on mouse immune cells, dendritic cells (mDC) and macrophage RAW264.7. Subcutaneous tumorigenicity experiments in C57BL/6 mice verified that CMS/PEG-B-P had an inhibitory effect on the growth of tumors and remodeling of the tumor immune microenvironment, including infiltration of CD4+ and CD8+ T cells and polarization of macrophages, as well as reduction of immunosuppressive cells. Meanwhile, CMS/PEG-B-P was found to have different effects on the release of cytokines in the tumor immune microenvironment, including The levels of immunostimulatory cytokines INF-γ and IL-12 are increased and the levels of immunosuppressive cytokines IL-6, IL-10 and IFN-α are decreased. In conclusion, nanomaterial-loaded immune checkpoint inhibitor therapies can enhance the immune response and reduce side effects, a combination that shows great potential as a new immunotherapeutic approach. STATEMENT OF SIGNIFICANCE: Pancreatic ductal adenocarcinoma (PDAC) is a fatal disease that has a low response to single-drug immunotherapy with PD-L1 (CD274) inhibitors. We preared PEG-modified mesoporous nanomaterials Cu2MoS4 (CMS) loaded with PD-L1 inhibitor BMS-1 and CXCR4 inhibitor Plerixafor to form the nanodrug CMS/PEG-B-P. Our study demonstrated that Nanomaterial-loaded immune checkpoint inhibitor therapies can enhance the immune response and reduce side effects, a combination that shows great potential as a new immunotherapeutic approach.


Asunto(s)
Carcinoma Ductal Pancreático , Compuestos Heterocíclicos , Nanopartículas , Neoplasias Pancreáticas , Animales , Ratones , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Antígeno B7-H1 , Linfocitos T CD8-positivos/patología , Microambiente Tumoral , Movilización de Célula Madre Hematopoyética , Ratones Endogámicos C57BL , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/metabolismo , Inmunoterapia , Citocinas/farmacología , Línea Celular Tumoral
18.
Vox Sang ; 119(1): 62-69, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37920933

RESUMEN

BACKGROUND AND OBJECTIVES: Granulocyte transfusion (GTX) is a treatment option for severe infections in patients with neutropenia. In previous studies, hydroxyethyl starch (HES) was used to enhance red blood cell sedimentation for granulocyte collection (GC). However, there are safety concerns about HES, and HES is not readily available in some countries. Therefore, we compared the granulocyte counts and GC efficiency achieved by two apheresis systems without HES. MATERIALS AND METHODS: All consecutive GC procedures performed between July 2011 and March 2018 at our hospital were analysed. COBE Spectra was used until 5 February 2016, and Spectra Optia was used afterwards. HES was not used. RESULTS: Twenty-six GC procedures were performed, including 18 performed using COBE Spectra and 8 using Spectra Optia. When Spectra Optia was used, >1 × 1010 neutrophils were collected from seven of the eight (88%) procedures. Although there was no significant difference in the granulocyte yield between COBE Spectra-based and Spectra Optia-based GC procedures, the collection efficiency of Spectra Optia was significantly higher than that of COBE Spectra (p = 0.021). Furthermore, the granulocyte yields of Spectra Optia-based GC tended to be more strongly correlated with the peripheral blood neutrophil count on the day of apheresis than those of COBE Spectra-based GC. CONCLUSION: Our results suggest that Spectra Optia achieves greater GC efficiency than COBE Spectra, even without HES. GTX may be a therapeutic option for severe neutropenia, even in places where HES is not available.


Asunto(s)
Eliminación de Componentes Sanguíneos , Neutropenia , Humanos , Eliminación de Componentes Sanguíneos/métodos , Granulocitos , Movilización de Célula Madre Hematopoyética , Almidón
19.
Cytotherapy ; 26(2): 171-177, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37930293

RESUMEN

BACKGROUND AIMS: Since the standardization of CD34 measurement by flow cytometry, predictors of leukapheresis CD34 yield have played a pivotal role in planning donor leukaphereses. We describe here a single institution's experience with a multivariate predictor that was used for 2,929 products without alteration for 20 years. METHODS: The ordinary least squares regression model variables included log peripheral CD34 count, collection duration (3- versus 4-hours), collection number, donor sex, and transplant type. RESULTS: During the study period we changed flow cytometers twice and leukapheresis instruments once. During the Cobe Spectra era the predictor explained 90% of the variability in CD34 collection yield for autologous transplants (r2 = 0.90), and 70% for allogeneic transplants with an overall sensitivity to predict a CD34 yield of ≥ 1 × 106/kg of 97.7%, and specificity of 81.4%. CONCLUSIONS: Implemented prospectively with real-time result reporting, the model allowed us to predict CD34 yield with both 3- and 4-hour collection scenarios. Given this guidance, 3-hour collections were selected by the clinical team 25% of the time, saving patient leukapheresis time and resources. When faced with a prediction of < 1 × 106 CD34/kg, the clinical team chose to defer collection 72% of the time. In instances where leukapheresis was performed despite a poor predicted outcome, 85% of patients collected on the Cobe Spectra, and 92% of patients collected on the Optia, failed to collect at least 1 × 106 CD34/kg. A revised model is tested retrospectively on Optia data, and suggestions for further improvements are discussed.


Asunto(s)
Leucaféresis , Donantes de Tejidos , Humanos , Estudios Retrospectivos , Citometría de Flujo , Antígenos CD34 , Movilización de Célula Madre Hematopoyética
20.
J Clin Apher ; 39(1): e22096, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37937412

RESUMEN

Understanding the apheresis principles for harvesting hematopoietic stem cells (HSCs) is critical for performing efficient procedures. However, despite significant advances in estimating the collection efficiency (CE) of aphereses, many confounding factors still need to be addressed in the classical calculations. The CE values are unrestricted, and many procedures exhibit CEs of a given cell population greater than 100%. This report introduces a simple equation that estimates the "crude" CE, which ranges from 0% to 100% and intrinsically considers the contribution of donor-related variables such as the pre-procedure mobilization and intra-apheresis recruitment of CD34+ cells (as a convenient marker for HSCs), as well as the performance of the apheresis system itself.


Asunto(s)
Eliminación de Componentes Sanguíneos , Trasplante de Células Madre Hematopoyéticas , Humanos , Movilización de Célula Madre Hematopoyética/métodos , Eliminación de Componentes Sanguíneos/métodos , Células Madre Hematopoyéticas , Antígenos CD34 , Donantes de Tejidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...